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Abstrad-A simple isoparametric finite element formulation based on a higher-order displacement
model for ftelture analysis of multilayer symmetric sandwich plates is presented. The assumed
displacement model accounts for non-linear variation of inplane displacements and constant vari­
ation of transverse displacement through the plate thickness. Further. the present formulation does
not require the fictitious shear correction coefficient(s) generally associated with the first-order shear
deformable theories. Two sandwich plate theories are developed: one. in which the free shear stress
conditions on the top and bottom bounding planes are imposed and another. in which such
conditions are not imposed. The validity of the present development(s) is establish"od through.
numerical evaluations for deftcctions/stresses!stress-resultants and their comparisons with the avail­
able thr"-e-dimensional .malyses/c1osed-form/other finite element solutions. Comparison of results
from thin plate. Mindlin .and prt:sent analyses with the eltactlhr"-e-dimensional analyses yields some
imJlQrtant conclusions rcg"rding the cIT,,'Cts of the assumptions made in the CPT and Mindlin type
theories. The cllmparalive study further est.thlishes the necessily ofa higher-order shear dcformahle
theory incorporating warping of the cross-Sl.'Ction particularly for sandwich plates.

I. INTRODUCTION

A multilayer sandwich pl.tte is a special form of advanced fibre-reinforced composite
laminate. The liter.tture available in the field of laminated composite plates is enormous
and the relevant av'lilable literature concerning bending stress analysis has been published
recently (Kant and Pandya. 1987). We examine here the available literature spl.:cifically
rclevant to the bending probkms of sandwich plates.

Reissner (1948) formuhlted the small deflection theory for the bending of isotropic
sandwich type structures. Since this initial publication. a number of papers have been
published on various aspects ofsandwich bending theory. Kao (1965) developed the govern­
ing differential equations for the non-rotationally symmetrical bending of isotropic circular
sandwich plates by means of a variational theorem. The governing equations for an ortho­
tropic clamped sandwich plate are derived using the variational principle of minimum
potential energy by Folic (1970). The most important contributions were from Srinivas and
Rao (1970) and Pagano (1970). who presented exact three-dimensional elasticity solutions
for laminated composite/sandwich plates. Whitney (1972) presented a theory analogous to
Mindlin's (1951) first-order shear deformation theory for stress analysis of laminated
composite/sandwich plates. Later. Lo £'1 al. (1977). Murthy (1981), Reddy (1984) and
Murty (1985) presented analytical solutions for laminated plate problems using higher­
order theories. These theories include warping of the transverse cross-sections. However,
they have not presented sandwich plate problems where the effect of warping of the cross­
section is predominant. These analytical solutions are limited to a few simple geometries,
loading and boundary conditions. This limitation is overcome by adopting the finite clement
method as a generalized numerical solution technique for practical laminated/sandwich
plate problems.

Monforton and Schmit (1969) presented displacement based finite element solutions
for sandwich plates using 16 degrees of freedom. 4 noded rectangular clements. Martin
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(1967) adopted 9 degrees of freedom. 3 noded triangular elements with assumed dis­
placement fields. Cook (1972) developed a 12 degrees of freedom. 4 noded general quadri­
lateral element including transverse shear deformation. Finite element solutions for multi­
layer sandwich plates have also been presented by Khatua and Cheung (1972. 1973) using
triangular and rectangular plate bending elements. Their formulation considered the ideal
type of sandwich construction in which the core layers contribute only to the shear rigidity
of the plate. Fazio and Ha (1974) presented finite element solutions by explicit derivation
ofstiffness matrices for bending and membrane actions ofa rectangular three layer sandwich
plate element using the assumed stress distribution approach. Mawenya and Davies (1974)
presented a general formulation for an 8 noded quadratic. isoparametric. multilayer plate
bending element which permits the layers to deform locally and incorporates the effects of
transverse shear deformation in each layer. Hinton et al. (1975). Reddy and Chao (1981)
and Putcha and Reddy (1984) adopted assumed displacement. penalty function and mixed
methods. respectively. to develop the finite element formulations. Kant and Sahani (1985)
presented a displacement based finite element formulation using a 9 noded Lagrangian/
Heterosis element. These formulations were based on a first-order shear deformable theory
(FOST) which is based on the assumption of the constant shear strain distribution through
the laminate thickness and requires the use of shear correction coefficients. Recently. Phan
and Reddy (1985). Putcha and Reddy (1986) and Ren and Hinton (1986) presented various
finite element formulations of a higher-order theory for laminated plates. However. they
have not applied it to sandwich plate problems.

The motivation for the present development comes from the work of Kant (1982) and
Kant et til. (1982). which was limited to thick isotropic plates. Pandya and Kant (1987.
1988ac) and Kant .lOd Pandya (1988a.b) extended these developments for orthotropic and
laminated composite/sandwich plates. This paper specifically de.lls with the development
and application of a C' isoparametric finite element for bending 'lOalysis of multilayer
symmetric sandwich plates by assuming a higher-order displacement model hitherto not
considered. The theory leads to a realistic (p'lrabolie) variation of transverse shear stresses
through the plate thickness. It is applicable to an n-Iayen:d sandwich plate with [(n + 1)/2]
stifl'layers and [(n - 1)/2) altermlting weak cores. The 9 noded Lagrangian quadratic clement
developed has 5 degrees or freedom per node.

2. TIIEORY

The present higher-order shear deformation theory for symmetric sandwich/laminated
plates has been developed by assuming the displacement neld in the following form:

ll(X.Y.=) = =O,(x.y)+=JO~(x.y)

I'(x. y.=) = =O..(x. y) +=Jo;(x. y)

lI'(x.y.=) = lI"u(x,y) (I)

in which Il'o represents the transverse displucement of the midplune und 0... 0,. arc the
rotutions of normals to the midplane about the y- and x-axes. respectively, as shown in
Fig. I. The parameters 0:. 0; arc the higher-order terms accounting for the flexural mode
of deformution in the Tuyl~r series expansion und ure ulso defined at the midplune. The
conditions that the transverse shenr stresses vanish on the top and bottom faces of the plate
arc equivulent to the requirement th'lt the corresponding struins be zero on these surfuces.
The trunsverse shear strains .Ire given by

tJII all' '... all'o,,,: =;;- + ;;; .. = 0,+3=·0,+·,····.f= ex ex

Equuting }J,.:(x. y. ±h/2) und }'J~. y. ±h/2) to zero. we obtain

(2)
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Fig. I. Lllllin:lte geometry with positive set of lamina/laminate reference axl."S. displal.'Cment com­
ponents .md fibre orientation.

(3)

Murthy (1981) and more recently Reddy (1984) used conditions (3) to eliminate O~ and 0:
from the displacement field. which contains additional inplane degrees of freedom (uo•vo).
In the present theory. we proceed with the displacement field given by eqns (I) and
conditions (3) are introduced later in the shear rigidity matrix.

By substitution of eqns (I) in the strain displacement equations of the classical theory
of elasticity. the following relationships arc obtained:

(4)

in which

[
aox aov ao.. aovJ

[X,. Xv' x....l = -iJ-' -iJ~. -iJ +~.. x}'}' vx

• •• [ao~ ao~ ao~ ao~]
[X.,. x.·. X...·] = ~'~'-a +-iJ. - vx vy y X

(5)

The material constitutive relations for the Lth layer can be written as
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rr-[c" Cl~ °rrrU2 - C I2 C22

C~J :1
2
2!12 0 0

{T23r = [C44 or{Y'Jr (6)
!13 0 CS5 Y13

where (u I_ u~_ ! 1~' TZ)' ! 1.1) are the stress and (£ ,. £z. ]I 12. }l2). Y13) the linear strain components
referred to the lamina coordinate axes (1, 2. 3) as shown in Fig. I and Ci/s the reduced
material stitfnesses of the L th lamina and the following relations hold between these and
the engineering elastic constants:

(7)

The stress-strain relation for the Lth lamina in the laminate coordinate axes (x. y. =) are
written as

QIJ]" {r... }L
Q2.l .'-"

QIJ Y",

(8)

in which

and

(9)

arc the stress and linear strain vectors with reference to the laminate axes and Q,/s are the
1r~msf{lrmcd reduced elustic coefficients in the plate (laminate) axes of the Lth lamina. The
tnmsformation of the stresses/strains between the lamina and the laminate coordinate
systems follows the usual transformation rule given in Jones (1975).

The total potential energy 1t of the plate is given by

1t = ~ r£' t1 d V - r15' F dA-J. JA
(10)

in which A is the mid-surface area of the plate. V the plate volume. F the intensity of the
force vector corresponding to the degrees of freedom 15 defined as

(II)

The expressions for the strain components given by relations (4) are substituted in expression
(10). The functional given by expression (10) is then minimized while carrying out explicit
integration through the plate thickness. This leads to the following ten stress·resultants for
the II-layered laminate:



[

M, :

M,. :

M n :

Finite clement evaluations 1271

(12)

After integration. these relations are written in a matrix form which defines the stress­
resultant/strain relations of the laminate and is given by

M X
M* X*

= [?~ ~ _O_J
Q o I ~ «I>

I •

Q* «1>*

or

it = ~i (13)

M = {M,.Mv.M".}'; X= {X,. X,·. X.,y} ,

M* = {M~.M~.M~,.}'; X* = {X~.X~.X:,·}'

Q = W,.QA'; «I> = {(f),.(!>... }'

Q* = {Q~.Q~}'; ( 14)

QIIJl J Q121l\ QI\Il\ QIIJl S QI21l s QI JfI S
I.th Illyer

Q22fl\ Q2JIl J QI21lS Q22 f1 , Q 2Jfl s
n

QJJflJ Q,Jlls Q 2JIl, QJJfI,
:t'b = 1:

I. - I Q
"

fl1 Q12 f1 1 QI Jfl1

Q22 f1 1 Q2Jfl 1

Symmetric QJJfl1

[Q"U Q"H 0

Q'~H. ]

I.lh layer

n QHfI 0
~= 1:.,

Qssll* (15)
I. - I

Symmetric QHIf*

where

I . .
Hi = -; (II". -11"._1)' i = 1.3.5.7

I

The shear rigidity matrix 9, given by eqn (15) is evolved by incorporating an alternate
form of conditions (3). namely
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(16)

in it and the resulting theory. higher-order shear deformation theory satisfying zero trans­
verse shear conditions on top and bottom bounding planes of the plate (HOSTI). becomes
consistent in the sense that it satisfies zero transverse shear stress conditions on the top
and bottom boundary planes of the plate. If the conditions. given by eqns (16). are not
incorporated. the resulting non-consistent theory. higher-order shear deformation theory
without satisfying above referred zero transverse shear conditions (HOST2). does not
satisfy the zero transverse shear stress conditions on the top and bottom boundary planes
of the plate. In this case the shear rigidity matrix.9'; is defined as

n

9;= L
1.- I

Q'5 H,
Q~,HJ

Q"f1,

Q~'HJ] Lthlayo.

QHflJ

Q~,f1,

Q H fl 5

(17)

The transverse shear stresses r~': and r~': arc not evaluated from eqn (8) as the continuity
conditions at the interfaces of the face sheet and the core arc not satisfied. For this reason
the interlalllinar shear (r~·:. r~J between layer (I-) and layer (1.+ I) at : = "1. arc obtained
by integrating the equilibrium equations ofelasticity for each layer over the lamina thickness
and sUlllming over layers L through fl as follows:

Lill. (UrTi ur')I .\' ,q'

r;:I:_I.,. = - L -u. + -:1~~ d:
i~ I II, I .t 1. .1

I. ill. (l~rTi l~rl)I -.J' I .0'

r)~I:~IIL = -:L 'u·'-;- + -u d:..= I II, I } X

(18)

Substitution of stresses in terms of midplane strains using relations (8) and (4). the integmls
of eqns (18) lead to the following expressions for interlaminar shear stresses:
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( 19)

In thc standard finite e1cmcnt tcchnique. the total solution domain is discrctized into
NE subdomains (elements) such that

.Vf:

n(tS) = 1: n"(tS)
,- I

(20)

where nand n' are the total potential of the system and the element. respectively. The
clement potential can be cxpressed in terms of internal strain energy U' and the cxternal
work done W' for an clement "e" as

n'(b) = U' - W' (21 )

in whieh " is the vector of unknown displacement vuriubles in the problem und it is defined
by eqn (II). If the same interpol'ltion function is used to define all the components of the
generalized displacement vector 6. we can write

Ntv

tS = 1: N,b,
I-I

(21)

in which N, is the interpoluting (shape) function ussociuted with node i. 6, the vulue of b
corresponding to node i and NN the number of nodes in an element.

The bending curvatures (X. X*) und the transverse shear strains (cD. (J)*) ure written in
terms of the degrees of freedom 6 by muking use of eqns (5) .IS follows:

tx.} = 2'h"

{:*} = fe,". (23)

Subscripts band s refer to bending and shcar. respectively. and matrices 2'b and .!fJ, are
defined as follows:



1174 B. N. PANDYA and T. KAST

0 e/ex 0 0 0

0 0 e'er 0 0, .
0 cier c/cx 0 0I •

If." = 0 0 0 a/ex 0

0 0 0 0 clay
0 0 0 a/cy c/cx

[Clex I 0 0

f]
cloy 0 I 0

If, = 0 0 0 3 (24)

0 0 0 0

With the generalized displacement vector 0 known at all points within the element. the
generalized strain vectors at any point are determined with the aid of eqns (24) and (22) as
follows:

where

and

{

«f) } NN ;'1N

«f). = .!I',(j = .!I', .L N,(j, =L :14" 0, = ;J11,d
' ...... 1 , .... t

(25a)

(25h)

For the elastostatic analysis. the internal strain energy of an element due to bending and
shear can be determined by integrating the products of moment stress-resultants and
bending curvatures, and shear stress-resultants and shear strains over the area ofan element

(26)

Implementing the stress resultants given by eqn (13) in the strain energy expression (26),
we obtain

(27)

Substitution of eqn (25a) for bending and shear strains into eqn (27) leads to the strain
encrgy cxpression in tcrms of the nodal displaccments which is givcn as follows:

(28)
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This can be written in a concise form as
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(29)

in which f' is the stiffness matrix for an element "e" which includes bending and the
transverse shear effects and is given by

f' = r {~~!?~b+~~!?'~.} dA.
J~

(30)

The computation of the element stiffness matrix from eqn (30) is economized by explicit
multiplication of the ~" fj and ~j matrices instead of carrying out the full matrix mul­
tiplication of the triple product. In addition, due to symmetry of the stiffness matrix, only
the blocks f ij lying on one side of the main diagonal are formed. The integral is evaluated
using the Gauss quadrature

fij =II II ~;9~jL/I d~d'1
-I -I

!I II

fij = L L Wa w" 1,11 :B;fi;}lj
a-I "-I

(31)

in which W" and W" arc weighting coefficients. .Q the number of numerical qU~ldrature

points in each of the two directions (x and y) and til the determinant of the standard
Jacobian matrix. Subscripts i and.i vary from I to a number of nodes per clement (NN).
Matrix !JI is defined by eqn (13) and matrices :Mj and ~I arc given by

(32)

For the problem of bending of sandwich plates, the applied external for(..'Cs may consist of
concentrated nodal loads F", each corresponding to nodal degrees of freedom, a distributed
load q acting over the element in the z-direction and a sinusoidal distributed load Pmm acting
over the element in the z-din:ction. The total external work done by these forces may be
expressed as follows:

The integral in eqn (33) is evaluated numerically using Gauss qua.drature as follows:

II II

P = L L Wa W" 1,11 {N"O,O,O,O.N2.O,O.0, 0.... , N.VN'O.O.O,O}'
,,-1 b. I

{
. mrex . mry }

x Q+Pm"Sm--;-Sm-7;- (34)

in which a and b arc the plate dimensions; ,\" and y are the Gauss point coordinates and m
and n arc the usual harmonic numbers.

4. NUMERICAL EXAMPLES AND DISCUSSION

Validity of the finite element formulations of the higher-order theories is established
by comparing results for laminated and sandwich plate problems with those available in
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the form of exact, closed form and other finite element solutions. The element properties
in the isoparametric finite element formulation presented here are evaluated through Gauss
quadrature. The selective integration scheme, namely 3 x 3 for flexure and 2 x 2 for shear
contributions, has been employed. The geometrical and material properties for two different
composite plate problems are as follows.

Material I

CII = 0.999781 ; C3J = 0.262931

C I2 = C21 = 0.231192; C.... = 0.266810

C22 = 0.524886 ; Css = 0.159914

Material II
Face sheets

Core

£1 G 12 G'l
£2 = 25; £2 = 0.5; £"; = 0.2

E2 = 106
, Gil = G 12, Vl 2 = 0.25

"1="3=0.lh, oc=O", p","=l.

Ex = Ey = 0.4 x lOs; G<: = G..: = 0.6 x lOs

G,r=0.16x10 5
; v.<r = 0.25. h2 =0.8"

E,
v21 = E" V12; directions I and x are coincident

'1

(35)

(36)

In bo1h the examples that follow. the plate is square and simply supported along all
four edges. Except for the convergence study the plate is discretized with four. 9 noded
quadrilateral clements in a quarter plate. The finite element evaluations of stresses are at
the nearest Gauss points. The deflection and stresses presented here are nondimensionalized
using the following multipliers:

100"JE, ,,2
ml = .. "; m2 =--, ;

p","a p",,,a" "mJ =--;
p_a

I
m 4 =-;

q

CII (core)
ms= "q (37)

Superscripts "e" and "c" used in Tables 1-8 represent stress predictions from equilibrium
and constitutive relations. respectively. The two examples considered are described below.

4.1. Example I : symmetric laminated plate under uniform transverse pressure
This example is selected from Srinivas and Rao (1970). The set of material and

geometrical properties given by relations (35) are used. The full (6 x 6) material stiffness
matrix given in Srinivas and Rao (1970) is reduced (5 x 5) to suit the present theories. by
assuming (1: = 0 and eliminating 8: from the stress-strain constitutive relations. The linal
material stiffness coefficients adopted are given by relations (35). All the stiffness matrix
coefficients for top and bottom laminae are some constant multiplier (modular ratio. R)
times the corresponding stiffness matrix coefficients for the middle lamina. The numerical
results showing convergence of deflection and stresses with mesh refinement are given in
Table I. The convergence of transverse shear stress value with mesh refinement is shown
in Fig. 2. The transverse deflection and stresses at different locations in the thickness
direction and for various modular ratios (R = 5. 10. 15. 25. 50. 100) are given in Tables
2-5. The effect of varying modular ratio (R) on transverse deflection is shown in Fig. 3.
The effect of modular ratio on inplane normal stresses in the x- and .v-directions at == 0.05
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Table I. Convergence of maximum stresses and displacement in a simply supponed square laminated plate
(material!. a/h = 10. R = 5)

Mesh size
in quaner 0'.(1 x m .. 0'._1 xm.. 't'""xm.. r.:~ x m. t::2 x m. woxm,

Source plate (a:::!. a:::!. hi::!) (a!::!. al::!. hi::!) (0. O. hj::!) (0. a/2. 0) (a/2. O. 0) (a/2. a/2. 0)

2x::! 6::!.38 38.93 -33.22 3.089 2.541 256.13

HOST1
3x3 60.31 38.43 -34.08 3.652 2.874 256.47
4x4 60.54 38.57 -33.98 3.832 3.069 256.38
5x5 60.35 38.::!6 -34.41 3.954 3.179 256.43

2x2 61.03 38.78 -33.81 3.259 2.539 257.78

HOST2
3x3 60.65 38.58 -34.35 3.634 2.879 257.44
4x4 60.55 38.53 -34.57 3.833 3.068 257.38
5x5 60.52 38.52 -34.69 3.953 3.188 257.37

Srinivas and 60.353 38.491 4.3641 258.97Rao (1970)

CLT 61.141 36.622 4.5899 216.94

is shown in Figs 4 and 5. respectively. The following general observations are made from
the results presented in Tables I - 5 and Figs 2-5.

( I) Deflection and inplane stresses can be accurately predicted without refining the
mesh. as the 2 x 2 mesh in a quarter plate gives sufficiently accurate results. The refined
mesh (5 x 5 in a quarter plate or more) is nl.'Cessary for accurate prediction of transverse
shear stresses.

(2) Errors in stress and detlection predictions increase with increasing value of modular
ratio (R). The dilTerences in the first (FOST) and higher-order shear deformation theories
(HOSTI. HOST2) are very high for a large vulue of modulur ratio. say R = 100.

(3) CPT und FOST underpredict deflections considerably. Detlections obtained using
higher-order theories ugree well with exact solutions.

(4) Out of the two higher-order shear deformution theories presented. the one which
does not sutisfy free trunsverse sheur stress conditions on top und bottom boundary planes
of the plate (HOST2) is preferred us its ugreement with exact solutions is superior than the
other one (HOSTI).

4·5

EXACT ANALYSIS

(-1'4)

Approx. - Exact

Exact
.,. Error.

1. j t S,i"iva5 & AQo(I970)hI-I' CO F2 (BOTTOM OF TOP PLY)3 (TOP Of Io4IOOL£ PLY)

4-0 "2-(H)8 '% --<»- .-- .---'- z- 0 -0- HOST 2

I kd HOST1

h3-0~
T

~

E

(-25·3)

3oo:.-----~5,------:';;tO~------,1~5----~21::-0------J2·5

- NO. OF ELEMENTS IN A QUARTER PLATE

Fig. 2. Convergence of transverse shear stress with the mesh refinement for a simply supported
square laminated plale under uniform transverse load (a/h = 10).

SAS 24:12-<;
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Table 2. Maximum stresses and displacement in a simply supported square laminated plate (material I. a/h = 10. R = 5)

~oc
.~----

G,I XI"" G.-:X,,'. O',d xn,.. tTl I xn,,, (1.t2 xm" tT t ) xnJ" r."xm. r.,2 x m. t'~)xn,.. woxms
(a/2. a/2. h12) (a:2. aJ2. 411110) (a(l. <1/2, 411/10) (<1/2, a,2. h;2) (a), a·2. 4h 10) (aj2. ai2. 4h/lO) (0, a/2, 4hllO) (0. a/2. 0) (0. a/2. -411/10) (a/2. a/2. 0,

Source in face sheet in core in face sheet in core
---------~

HOSTI
62.38 46.91 9.382 38.93 30.33 6.065 2.566 3.089 2.566 256.13
(3.36) (0.62' (OA5) (1.14' (0.77) ( -1.56) ( -31.0) ( -29.2) ( -21.5) (-1.1)

HOST2
61.03 47.32 9A63 38.78 30A2 6.083 2.422 3.259 2.422 257.71l
( Ll2) (lA9) (1.32, (0.75' (1.07) ( -1.27, ( -34.9) (-25.3) ( -25.9) ( -0.46)

FaST
61.87 49.50 9.899 36.65 29.32 5.864 2.444 3.313 2.444 236.10
(2.51) (6.17) (5.99) ( -4.78) ( -2.58) ( -4.82' (-34.29) ( -24.1) ( -25.2) ( -1l.1l3'

Srinivas and 60.353 46.623 9.340 38.491 30.097 6.161 3.7194 4.3641 3.2675 258.97
Rao (1970) !l'

ClT 61.141 48.913 9.783 36.622 29.297 5.860 3.3860 4.5899 3.3860 216.94 ;Z
(1.31) (4.91) (4.74) ( -4.86) ( -2.66) ( -4.1l9' ( -8.96) (5.17) (3.63) ( -16.23) ':--_._---

~
0<
>-
III
:3

Table 3. Maximum stresses and displacement in a simply supported square laminated plate (material I. aI"~ = 10. R = 10)
Q.

:-I
(1t; l xnt" o,:xm. 0d xm. all xnJ. (J)2 xn'4 0" xm. r."xm. r~:2 xm. t~;tlXnl.. woxnJj i"l

>-
(<1;2. a/2. hi2) (a;2, a/2, 411110) (<li2, a12. 411/10) (aj2. ai2. hi2) (ai2. a.'2, 411(10) (a;2. <1,2, 411/10) (0, a/2. 4h/lO) (0. a/2. 0) (0. a/2, -411/10) (<1/2, tI/2. 0) ~

Source in face sh~'Ct in core in face sheet in core
-,,-_.. _~._-

HOSTI
64.65 51.31 5.131 42.83 33.97 3.397 2.587 3.147 2.587 152.33

( -1.04) (5.02' (4.65) ( -1.69) (1.67) (- 2.94) (-34.1) ( -23.2) ( -26.4) ( -4.42)

HOST2 66.23 50.00 5.000 43.78 33.81 3.381 2.629 3.073 2.629 156.11l
(1.37) (2.34) (1.911) (OA9) (1.19) ( -3.4) ( -33.1) ( -25.0 ( -25.2) (-2.01)

FOST
67.1l0 54.24 5.414 40.10 32.08 3.208 2.676 3.152 2.676 131.095
(3.78) (11.02) (10.63) ( -7.96) ( -3.99) ( -8.34) ( -31.9) ( -23.0) ( -23.9) (-17.75)

Srinivas and
65.332 48.857 4.903 43.566 33.413 3.500 3.9285 4,0959 3.5154 I59.31l

Rao (I970)

ClT
66.947 53.557 5.3S6 40.099 32.079 3.208 3.7075 4.3666 3.7075 118.77
(2A7) (9.62) (9.24) (- 7.96) ( 3.99) ( -8.34) (- 5.63) (6.61) (5.46) ( -25.411)



Table 4. Maximum stresses and displacement in a simply supported square laminated plate (material I, a/II = 10, R = 15)
-------_., _ .._"-,_.__.-

(I.IXIII~ (1 ... : x,,,", (lllxm. u,. i X,,," O'd:X n,,,, (1.1 xm. ~l' x II/~ f~:J X n,. r.d x III. WuXIIII

(11/2, uJ2, hj2) (a!2, 11/2, 4h;10) (a/2,a}2,4h,lO) (a!2, a2. 11.2) (u 2, u2, 4h, 10) (a, 2, a}2, 4hilO) (0, a/2, 4h/10) (0, u/2, 0) (0. a/2. - 411/10) (u/2, u/2, 0)
Source in face sh.:.:t in core in face sh.:.:t in core

-_._-.-----~---_._.-,--------- ._---,-_._-~,._.~._.. '.. _--------_._---_.~'--. ......_'._-.'--

1I0STI 66.62 51.97 3.465 44.92 35.41 2.361 2.691 3.035 2.691 110.43
(-0.25) (7.60) (7.01) (- 3.24) (1.30) ( -5.33) ( - 31.')8) ( - 23.43) (- 24.77) ( -9.28)

HOSn 67.88 49.94 3.329 46.45 35.36 2.357 2.693 2.989 2.693 117.14
(1.64) (3.40) (2.81) (0.06) (1.I6) (- 5.49) (-31.92) ( -24.59) ( -24.71) ( -3.76)

FOST 70.04 56.03 3.735 41.39 33.11 2.208 2.764 3.091 2.764 90.85
(4.87) (16.00) (15.35) ( -10.84) ( -5.28) ( -11.47) ( -30.13) ( -22.02) (- 22.72) ( -25.36)

Srinivas and
66.787 48.299 3.238 46.424 34.955 2.494 3.9559 3.9638 3.5768 121.72Raa (1970) :!!e.

CLT 69.135 55.308 3.687 41.410 33.128 2.209 3.8287 4.2825 3.8287 81.768 n
(3.52) (14.51) (13.87) (-10.80) (- 5.23) (-11.43) ( -3.22) (8.04) (7.04) ( -32.82) ta

i
Table 5. Maximum stresses and displacement in a simply supponed square laminated plate (material I, a/h = 10) ~.

------,~---_._----

(1... JX''' .. allxm. a.~1 xn.,. c1,l xn•• a.1 x II/~ t~z1 X /I' .. t~,,2 X nl. Wu X 11/1
a

R (1.1 X m. (a/2, a/2, 4h/lO) (ai2, ai2, 4hi 10) (u; 2, a/2, h!2) (a/2.a;2,4/IiI0) (a/2, aj2, 4h/lO) (0, u/2, 411/10) (0, a/2, 0) (u/2, a/2, 0)
Source (a/2, al2, hj2) in face sh.:.:t in core in face sheet in core

.-.....~------

HOSTI 66.66 53.03 2.t21 46.64 31.06 1.482 2.744 2.973 72.1411
HOST2 25 lI8.89 48.27 1.931 4<).118 37.03 1.481 2.126 2.1197 K2.K6
fOST 71.94 57.55 2.302 42.49 33.99 1.36 2.1138 3.040 56.331

HOST I 67.37 52.75 1.055 411.54 38.39 0.7678 2.791 2.898 39.813
HOST2 50 69.14 43.57 0.8714 55.04 38.89 0.7719 2.108 2.782 53.301
FOST 73.44 58.75 1.I75 43.35 34.68 0.6935 2.897 3.000 28.904

HOST I 67.30 52.57 0.5257 49.54 39.33 0.3933 2.808 2.861 21.166
HOSH 100 69.18 37.15 0.3715 60.63 40.15 0.4015 2.650 2.677 34.521
FOST 14.22 59.37 0.5937 43.79 35.03 0.3503 2.921 2.979 14.641

N:a



N
Table 6. Maximum stresses and displacement in a simply supported square sandwich plate (material II. alh =4) !

a, xm~ t1:t, x "'2 a.. xm~ Tn xn'l r.cxmJ ruxmJ t~,Xn'J r~,xmJ lI'o XnI,

Source (a/2, 0/2, h12) (012. 0/2. 4h/10) (0/2. a/2, h,l2) (0,0, h/2) (0, a/2, 0) (0. a12. 0) (012,0.0) (012.0,0) (012, 0/2, 0)

IIOS1I 1.2470 0.2416 0.2338 -0.1343 0.2245 0.2382 0.08653 0.1132 0.6947
(-19.9) (-9.9) ( -6.5) (-6.1) (- 19.3)

HOST2 1.S230 -0.0120 0.2414 -0.1419 0.2200 0.2750 0.08898 0.1137 0.7160
(- 2.1) (-7.0) ( -1.3) ( -7.9) ( -17.0)

FOST 0.9056 0.7244 0.1578 -0.0912 0.2505 0.0995 0.06603 0.0436 0.4755
( -41.8) ( -39.2) ( -36.5) (4.8) ( -38.4)

Pagano (1970) I.SS6 -0.2330 0.2595 -0.1437 0.2390 - 0.1072

Reddy and Chao (1981)-FEM 0.8650 - 0.1517 -0.0878 - 0.0994 - 0.1740 0.4761

Reddy and Chao (1981)-CFS 0.8670 - 0.1520 -0.0877 - 0.0993 - 0.1740 0.4767 !=

CLT 1.097 0.878 0.0543 -0.0433 0.324 0.0295 ?'-
( -29.5) (-79.1) ( -69.9) (35.6) - ( -72.5) - --

~
~
-<»
~
:2
c..

Table 7. Maximum stresses and displacement in a simply supported square sandwich plate (material II, alh = 10) :-l

a,xml r.,xmJ f~;rxm} r~, x nlJ f~:)( ",)
;l":

a,xm~ a, xml T...., xm 2 lI'oXnl, »
Source (a/2. a/2, h/2) (a/2. a/2. 4hi 10) (0/2. ai2. h/2) (0, O. hi2) (0, 0/2. 0) (0. 0/2. 0) (0/2,0.0) (0/2.0,0) (0/2. 012, 0) 'L

-l

HOSTI 1.\10 0.7445 0.1017 -0.0666 0.2700 0.2841 0.04366 0.05593 0.2023
( -3.7) (18.6) ( -7.9) ( -5.8) (-IO.O) ( -17.2)

HOST2
1.166 0.6878 0.1052 -0.0692 0.2685 0.3400 0.04462 0.05642 0.2087
(1.1 ) (9.5) ( -4.7) (-2.1) ( -10.5) ( -15.3)

FOST
1.062 0.8495 0.08057 -0.05532 0.2779 0.\112 0.03636 0.02384 0.1557

( -7.9) (35.3) ( -27.0) ( -21.8) ( -7.4) ( -31.0)

Pagano (1970) Ll53 0.628 0.1104 -0.0707 0.3000 - 0.05270

Reddy and Chao (I981)-FEM 1.015 - 0.0774 -0.0535 - 0.1112 - 0.095 0.1558

Reddy and Chao (1981)-CFS 1.017 - 0.0776 -0.0533 - 0.1110 - 0.095 0.1560

CLT
1.097 0.878 0.0543 -0.0433 0.324 0.0295

(-4.9) (39.8) (- 50.8) ( -38.8) (8.0) - ( -44.0)



Table 8. Maximum str~'SS('s and displacement in a simply supported square sandwich plate (material II. a/h '" 100)

O' .. xn'l (I.xn,} 11. x nil T.... X m! r.,Xnll t~:xmJ t~z X"'I r" J( nil woxm.
Source (aI2. a/2, hi2) (a/2, a/2, 4hllO) (a'2, a/2. h12) (0,0, hi2) (0, a;2, 0) (0. a/2, 0) (a/2.0,0) (a/2, O,0) (a/2, a/2, 0)

1.108 0.8852 0.0554 -0.0440 0.2880 0.3001 0.02703 0.03362 0.01191 :!!
HOST! e.

(0.9) (1.2) (0.7) (0.7) (-11.1) ( -9.0) Ii

1I0ST2 1.109 0.8847 0.0554 -0.0440 0.2880 0.3627 0.02704 0.03322 0.0891 1(1.0) (1.1 ) (0.7) (0.7) (-11.1) ( -9.0)

FOST 1.104 0.8836 0.0546 -0.0435 0.2875 0.1152 0.02695 0.01767 0.0883 !(0.5) (1.0) (-0.7) ( -0.5) (-11.3) ( -9.3)
c:

Pagano (1970) 1.098 0.875 0.0550 -0.0437 0.3240 - 0.02970 - ~.

Reddy and Chao (19111)-FEM Ul63 - 0.0530 -0.0421 - 0.1158 - 0.072 0.0882 a
Reddy and Chao (I981)-CFS 1.067 - 0.0531 -0.0420 - 0.1149 - 0.069 0.0885

CLT 1.097 0.878 0.0543 -0.0433 0.3240 0.02950
( -O.\) (0.3) (- 1.3) (-0.9) (0.0) - ( -0.7) -

-----._--

~
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fig. 3. Em",,",! of modular r..tio (tor or bottom/middle) on mallimum transverse dclketion for a
simply supported. symmetrically l;tminah.:d. square plate under uniform tmnsversc IOild (alk '" 10).
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fig. 4. Elf~"Ct ofmoduJar ratio (top or bottom/middle) on maximum inplane normal stress (at level
I in .\:-dircction) for a simply supported. symmetrically laminated square plate under uniform

transverse load (a/k ... 10).
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Fig. 5. Effect of m{ldular ratio (top or bottom/middle) on ma1timum inplane normal stress (at level
I in y.dircl:tion) for a simply supported, symmetril:ally laminated square plate under uniform

transverse load (u/h = 10).

4.2. Example 2: .Vtlntlwich pltltc' uncia sinusoidal clistrihufc'c/ load
This example is selected rrom Pagano (1970). The properties given by relations (36)

arc used for the an..t1ysis. The clastic properties given by Pagano (1970) are modified
accordingly by introducing therein the assumption of a: == O. The results for deflection and
stresses with pcrccnt.tgccrrors specific.-d within p'lfcntheses for Cllh = 4, 10 and 100 arc
presented in T'lbles 6-8. rcs(l(.'Ctivcly. The em...ct ofplate side-to-thickness ratio on transverse
deflection is shown in Fig. 6. The variation or inplane displacement along the x-direction
(II) through the plate thickness is shown in Fig. 7. The effect or plate side-ta-thickness ratio
on transverse she'lr stresses (1',.:) and inptanc normal stresses (at) are shown in Figs 8 and

0·7

0'6

X HO$T 1

HOSt 2
0'5 FaST

I
0 FO!>T {crs)

04 I R.dd~ & Choo (19et)
eM I.. tI t

r
0') I

\
\

0·2 \,
'b...,

"'-0" --
C.i.l

100
-Cllh

Fig. 6. Effect of plate side-to-thickness ratios on the transverse deflections for a simply supported
square sandwich plate under sinusoidal transverse load.
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Fig. 7. Variation of inplane displacement along .,;-allis for a simply supported square sandwich plate
(C1/h = 4) under sinusoidal transverse load.
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Fig. 8. Effect of plate side-to-thickness ratios on the transverse: shear strCs.~L-S for a simply supported
square sandwich plate under sinusoidal transverse: load.

9, respectively. The following observations are made from the results presented in Tables
6-8 and Figs 6-9.

(I) For thick (o/h = 4) and moderately thick (alll = 10) plates, the deflection and
stresses predicted by CPT and FOST are grossly in error.

(2) All the theories agree well with each other for thin plates (al" = 100).
(3) The tnmsverse cross-section warping phenomenon which will be predominant for

a thick sandwich plate is evident in the present higher-order theories (Fig. 7).
(4) The first and the last observations made in Example I are true for this example

too.

5. CONCLUSIONS

The results from the higher-order two-dimensional plate theories developed here com­
pare well with three-dimensional elasticity solutions. The theories lead to realistic parabolic
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Fig. 9. EIfI."Ct of plate side·t\l-thickn~"Ssratios on the inplane normal stresses for a simply supported
square Sitndwich plate under sinusoidal tr.tn~verse load.

v<tri'ltion of tmnsverse shear stresses through the pl'lte thkkness. thus they do not reljuire
the use of she<tr correction coellicients. The simplifying assumptions m<tde in elY[ and
FOST arc relll."Cted by high pcrcent<tge error in the results of thick sandwich or laminated
pl'ltes with highly still' 1~lcings. It is believed that the improved she'lr deform.ttion theory
presented here is essential for reliable analyses ofsandwich type laminated composite phttes.
Finally. the genenil isop.tr<tmetric tinite clement formulation of these theories presented can
be applied to analyse .IIlY pmclical plate structures.
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